SECTION V

Economics & Post-Harvest

A study on the adoption of improved maize technologies in northern Ghana

K.O. Gyasi¹, L.N. Abatania¹, T. Paulinus¹, M.S. Abdulai¹ and A.S. Langyintuo^{1,2}

¹Savanna Agricultural Research Institute (SARI), Box 52, Tamale, Ghana ^{1,2}Presently: Purdue University, Lafayette, Indiana, USA.

Abstract

Résumé

Introduction

-

.

4% 2020 (1995) (), (), (), (. 1999) 500 000 (1998)

500 000 (1998) (2001; , 1992; .1990).

· : , , , , , , ·

,

,

,

,

,

,

,

.

.

,

,

Materials and Methods

:

•

Sources of data

261 12 1999. , , , . / 261 () . :() , () -, ., () , , ,

,

Data analysis

•

Results and Discussion

5%

Socioeconomic characteristics of the sampled households

(1). .

,

•

(

		%	
% (%)	248	95	
(%)	13	5	
()	43.4	9.7	
(.)	13.1	8.4	
(%)	174	66.7	
(%)	25	9.6	
(%)	62 4 4	23.8	
/ ()	7.7	5.0	
- (%)			
-	128	49.0	
-	133	51.0	
-			
-	207	79.5	
	54	20.5	
(%)			
	63	24.1	
	6 170	2.2	
• ,			
	()
	(,
		,	
,			
(81%)			13%
. 4%			
0.2	10	,	
5.2 (1).			
0.6 .			
400/			

Table 1. Main characteristics of sampled households.

)

•

,

1).

Maize cropping system in northern Ghana.

Table 2. Gender responsibility and household task division in maize
production (%).

89.	7 0.4	10.0
12.	6 31.1	36.3
77.	0 2.3	20.7
36.	4 3.4	20.7
5.0	9.0	85.8
24.	5 6.5	69.0
14.	9 13.4	71.6

370

,

,

	•	
27%		

.

(2)
· ·	٠,٠

.

Table 3. Farming practices in northern Ghana as indicated by
farmers in the survey.

,

		68	26.8
		144	55.2
		69	18.6
()		200	76.6
		61	23.4
		223	85.4
		48	14.6
	()		
		85	38.1
		108	48.4
		14	6.3
		16	7.2
() +		200	89.7
+		23	10.3
		0	0.0
		64	24.4
		61	23.4
3		6	2.3
		86	33.0
		44	16.9
	, 79%		
•		(5	51%)
	(, 1982	/83;	, 1983/84;
, 1984/85;	, 1985/86; ,	1988;	, 1989;
. 1992).	-		
		200/	•
	1001	, 38%	
, 7%	48%		,
	(3).	
			()

.

) (58%)

. --

-

Adoption of improved varieties¹

				,	,	,
,	,					
		•	(4).		
			,	,		

 Table 4. Major maize cultivars grown in Northern Ghana (%)*.

16.0	14.2
17.6	11.1
20.0	13.0
21.4	8.4
10.7	6.4
11.9	7.7
3.4	0.0
1.5	0.0
12.4	0.0
62.4	25.0

•

.

: (1)

2

,

•

•

Table 5. The Rates of adoption of improved varieties of maize innorthern Ghana.

								-
	-	-		-	-	-		
1000	0.4	4.0	0.4	0.0	0.0	1.6	10.0	_
1988	3.4	4.2	8.4	0.0	0.0	4.6	19.6	
1989	3.1	5.0	8.8	0.0	0.0	6.1	23.4	
1990	4.6	5.7	10.3	0.0	0.	8.8	27.9	
1991	7.3	9.2	10.3	0.0	3.1	9.6	34.7	
1992	9.6	9.2	11.1	0.8	4.2	10.7	36.2	
1993	11.9	12.3	12.3	0.8	5.4	11.9	44.2	
1994	14.2	13.8	11.9	0.8	9.2	14.2	48.7	
1995	17.2	15.3	14.9	0.8	11.9	14.2	60.4	
1996	19.9	16.9	16.1	1.1	14.2	20.3	69.4	
1997	20.3	18.4	16.1	1.5	16.1	22.6	73.2	
1998	20.3	18.4	15.4	1.1	17.3	22.2	76.2	
1999	22.2	17.6	15.3	1.5	17.6	19.9	75.4	
								_

" _

.

. 1.

,

1999.

Fig.1. Cumulative adoption curve for improved maize varieties in northern Ghana.

Adoption decision model

(

,

,

Empirical results

•

/ . 1993). , (

³ () 4.3

			•	•
() () ()		43.4 13.1 4.4 2.8	21 1 0.2 0	69 57 5 10
		12.3	1	41
	: 1	.81	0	1
	, : 1	0.45	0	1
	: 1	0.50	0	1
	; 1	0.56	0	1
	; 1	0.62	0	1
	, : 1	0.65	0	1
	, : 1	0.55	0	1
	, :1	0.9	0	1
	,			

Table 6. Descriptive statistics of variables used in the empirical model.

	1985;		(1984;	1980) ^{4.}	1996;
)		,	(

()

•

			-	
	-0.983	0.573	-1.715*	-
	0.024	0.012	1.961**	
	-0.061	0.014	-4.252***	
	0.828	0.031	26.565***	
	0.025	0.042	0.605	
	-0.051	0.013	-3.972***	
	0.671	0.417	1.691*	
	0.724	0.253	2.857***	
	0.054	0.279	0.192	
	-0.079	0.228	-0.349	
	0.251	0.340	0.739	
	0.222	0.122	1.823*	
	0.104	0.267	0.388	
	0.538	0.254	2.116**	
	1.672	0.077	21.701	
	:			
*	10%, -	**	5%, -	-
, ***	1%, -	•		
-	- =	87.		
	= -490.71			

"

,

,

.

...

,

,

,

Table 7. Tobit model estimate for the intensity of adoption ofimproved maize varieties in Northern Ghana.

	44		
	6	(99%	,
)	4		

,

,

_

- (. 1999, 2000; 1993; . 1990; 1975; 1970). . 2000; 2000; 1993;

Conclusion

•

,

.

(), .

,

,

,

20% 1988, 76% 1999.

, "

References

.

.

in Northern Ghana.

...

,

Journal of International Agriculture 35(4): 325-337).

. . . 1993. , . .,

: , . Agricultural Economics 9:297 311.

of innovations: the neglected role of institutional constraints. . . , , , .

. . . 1992. Food and nutrition adequacy in Ghana. . 27. , :

. . 1990**. A** poverty profile for Ghana, 1987–88..

• . 5. , . .

. 1993. The adoption of Agricultural Technology: A Guide for survey design. Mexico. . :

: , . . 1974.

. Nigerian Journal of Economics and Social Studies 16:3 6.

, . 1980. , . Oxford Economic Papers 32: 263 295.

, ., . . 1984. . American Journal of Agricultural Economics 66:312 320.

Economic Development and Cultural Change 33:255 298.

, . 1992.

. **MSc. Thesis**. University of Gottingen. Germany.

, . 1975. The diffusion of hybrid maize in Western Kenya. , .

, ., . . , 1995. Ghana fertilizer privatization scheme: Private sector roles and public sector responsibilities in meeting needs of farmers. .

, . . 1964. Econometric theory.

, . . 2001.

prospects of maize research in West and Central Africa. , 4 7 , 1999.

the adoption of improved rice technologies in Northern Ghana. / -.

., . . 1993. Economic policy and , technology determinants of the comparative advantage of wheat production in the Sudan. . 6. impact of improved maize production technology: A case study of Grains Development Project. 99 01. : , . **Agricultural Economics** 4: 1.). 1997. Accelerated (agricultural growth and development in support of vision **2020**. . 1998. (). Agriculture in Ghana: Facts and figures. , , .). 1983/84, 1984/85, 1985/86, 1988, 1989. Annual Reports, , , . , . . 1987. . Rural **Sociology** 52(2): 208 220. , ., 1988. -. Nyankpala Agricultural Research Report . 1. 1998. Econometric models and economic forecasts. / - , . . 1984. , . ., . . American Journal of Agricultural Economics 66: 405 415.

Journal of Agricultural Economics 36(3).

Appendix A: Empirical model??

(1985), : * = ? + ? + ?..1 (*) = * ..2 * > 0 = 0, \mathbf{Y}^* Х () **Y*** , , (**Y**[∗] >**0**) **Y**^{*} =**0**). (() , **?**, **?** Y , **X** ? : (*) = *. (*/?) + ?. (*/?)..3

$$(*)=$$
 ()
? = ()
*/? = (*/?)= ,
(*/?)= ,
(*/?) = = (*/?).

Appendix B

•

J.E.Onyibe¹, C.K. Daudu¹, J.G. Akpoko¹, R.A. Gbadegesin¹, and E.N.O. Iwuafor²

¹NAERLS, Ahmadu Bello University, P.M.B. 1067, Zaria, Nigeria ²IAR, Ahmadu Bello University, P.M.B. 1044, Zaria, Nigeria.

Abstract

Résumé

1997

()

.

Methodology

,

-

.

-

,

Study area

(. 12.0-13.2	. 6 40 -8 20 ; . 1).
500	(1972).
-	30
	, , ,
1997, 95 - 1 ()	, 95 - 1() 65 61
0.5 3 20. (. 1).	6 , 3 ₂ 0 ₅ , 1997,
	1999.

. .

1997 2000

,

•

Figure 1: Map of Katsina state showing the pattern of spread of Extra-early maize cultivation between 1997 to 2000.

Survey

,

Table 1	. Categories o	f extra-early	maize	farmers	identified	and	used
	in the analy	sis.					

		()
*	1997	1998	1999	2000
	58	-	-	-
	-	51	-	-
	-	-	183	-
	-	-	-	172
				464
*First generation-	1997			
Second generation-	199	8		
Third generation- /		1999		
Fourth generation-		2000		,

•

.

•

Data analysis

. 20 . -. (1998) . 20

Y=?₀+?₁ Sex +?₂ Age +?₃ Edu +?₄FS +?₅KepLiv +?₆ V₁loca +?₇S Seed +?₈ Plt Patn +?₉ Yr Cont Crop. +?₁₀ Priss +?₁₁ Qharv 00 + ?₁₂ Q sold 00, +?₁₃ AdopC. +?₁₄ Pest Prob +?₁₅ Var +?₁₆ Trend + ?₁₇ Fert Prob +?₁₈ Exten Supt +?₁₉ Mkt Priz +?₂₀ Negat +?

;

:

(1999)

_

. (1998).

,

387

.

Results and Discussion

Sources of seed of extra-early maize to farmers

Table 2. List of explanatory variables used in stepwise multiple regression analysis.

Table 3. Sources of seed of extra-early varieties (95 TZEE-W1 and 95TZEE-Y1) available to farmers in the Sudan savanna ofKatsina State, 1997-2000 cropping seasons.

		%		
	1997(=58)	1998(=51)	1999(=183)	2000(=172)
	100 (58)**	-	25 (46)	9 (16)
	-	43 (22)	54 (98)	72 (123)
	-	20 (10)	15(28)	13 (23)
	-	35 (18)	6 (11)	2 (3)
*	-	2 (1)	-	4 (7)

**Figures in parenthesis are the actual number of respondents. *Others– Those who obtained the seeds during field days.

,

•

.

_

Farmers assessment of extra-early maize

Negative attributes of the varieties. 82 172

(55%) (4).

Table 4. Farmers' assessment of the negative attributes of two extra-
early maize varieties in the Sudan and Sahel savanna of
Katsina State, Nigeria in 2000.

_

		%			
	_	95 - 1	95 - 1		
		(=36)	(=46)	(=82)	
		56 (20)*	54 (25)	55	
(11 (4)	13 (6)	12	
)					
		28 (10)	26 (12)	27	
	Striga	Ò	7 (3)	4	
	U U	6 (2)	0 ´	2	
*					

.

(

,

Striga

. Striga

. 1994). Striga

(. 1998).

,

Positive attributes of the varieties.

- , (5).
- Table 5. Farmers' assessment of the positive attributes of two extra-
early maize varieties in the Sudan and Sahel savanna of
Katsina State, Nigeria in 2000.

	%			
	95 - 1			
	(= 36)	(= 46)	(= 82)	
*	58 (21)	54 (25)	56	
	19 (7)	13 (6)	16	
	6 (2)	11 (5)	9	
	6 (2)	7 (3)	6	
	11 (4)	15 (7)	13	

*Relative to traditional staple crops such as sorghum and millet.

Cropping system

6).

Table 6. Planting pattern of involving extra-early maize varieties use by the respondents.

.

,

(

	%	
	1999 (=183)	2000 (=172)
*	12	14
	33	28
	7	5
	27	34
	18	17
	3	2
*		

,

Area cropped to extraearly maize

,

,

.

(

Table 7. Estimated area cropped to extra-early maize varieties by
respondents between 1997 to 2000.

	1997	1998	1999**	2000**
95 - 1 ()	1.5	11	49	68
95 - 1 ()	1.4	1.5	74	87
()	2.9	26	123	155
	58	51	183	172
(0.05	0.51	0.67	0.90
*	-			1:1

Spread

,

**

1

1997. 1998,

,

1999

.

.

2000,

,

(1996)

Determinants of area expansion

,

,

,

00 (8).

Table 8. Statistically significant parameter estimates from the
stepwise multiple regression of land area cultivated to
extra-early maize on several variables in the Sudan and
Sahel savanna zones of Katsina State, Nigeria.

			-	2
00		0.493	4.268**	0.563
		0.389	3.466**	0.553
00		0.413	2.394*	0.439
		0.331	3.273**	0.531
		-0.403	-3.16**	0.522
				0.581
* **	0.05	0.01	,	

Conclusion

- 1 95 - 1) . . .

References

, , , . . , . . , . . . 1998.

243 252 .

,

(.) Towards sustainable farming systems in sub-Saharan Africa.

_

. 1996 Annual Report of WECAMAN Maize Promotion Project. 11 .

. 1995. A 2020 vision for food, agriculture, and the environment.

.

,

(95

,

, 1994. Striga Striga Striga

50 97[°] in . , . . . , . (.) Towards an integrated control of Striga in Africa. 1 (), 11 14 1990, Striga ,

151 161 in . , .

, . (.) Towards sustainable farming systems in sub-Saharan Africa.

sub-Saharan Africa.

, . ., . . , . . . ,

1999.

383 393 in . - , . . . , . . . (.) **Impact,** , . challenges and prospects of maize research and development in West and Central Africa.

, 4 7 , 1999, - , . / .

Potential impact of input policy on maize supply in Ghana

A.S. Langyintuo, K. Foster, and J. Lowenberg-DeBoer

Department of Agricultural Economics, Purdue University, 1145 Krannert Building, West Lafayette, IN 47907, USA

Abstract

Résumé

Introduction

(

, . , , , , , _ . .

. 1989; , 1992). , (1992; 1994). , , , , , , , (1992). .

, () () () . , - 80.

,

,

, _____.

(),

(1996, 1998).

1995 (1994). () . (1994)

,

(1996, 2000).

, ,

Model specification and estimation procedure

(. .

, (..

(?_{FL} ? ?_{LF}):

5

· _, , |

$$\ln C ??_{0} ??_{F} \ln W_{F} ??_{L} \ln W_{L} ??_{K} \ln W_{K} ??_{Q} \ln Q? 0.5?_{QQ} (\ln Q)^{2} ??_{T}T$$

$$? 0.5?_{KK} (\ln W_{K})^{2} ??_{QF} \ln Q \ln W_{F} ??_{QL} \ln Q \ln W_{L} ??_{QK} \ln Q \ln W_{K} ??_{FT} \ln W_{F}T$$

$$? ?_{LT} \ln W_{L}T ??_{KT} \ln W_{K}T ??_{QT} LnQT ??_{TT}T$$
(2.1)

$$S_F ??_F ??_F \ln W_F ??_{FL} \ln W_L ??_{FK} \ln W_K ??_F \ln Q ??_{FT} T$$
(2.2)

$$S_L ? ?_L ? ?_{FL} \ln W_F ? ?_{LL} \ln W_L ? ?_{LK} \ln W_K ? ?_L \ln Q ? ?_{LT} T$$

$$(2.3)$$

$$R_{Q}??_{Q}??_{QF}\ln W_{F}??_{QL}\ln W_{L}??_{QK}\ln W_{K}??_{QQ}\ln Q??_{QT}$$
(2.4)

-

.

,

:

,

$$(. 1994):$$

$$?_{ii}^{A}? \frac{?_{ii}?S_{i}(S_{i}?1)}{S_{i}^{2}}? 0.$$

$$()$$

$$()$$

$$()$$

$$MC ? \{ ?_{Q} ? ?_{QQ} \ln Q ? ?_{Qi} \ln W_i \} AC$$

$$W_i \qquad i$$

$$(4)$$

.

_

,

$$\mathcal{P}_{MC}^{P_{F}} ? \frac{?MC}{?W_{F}} \cdot \frac{W_{F}}{MC} ? \frac{AC?_{QF}}{MC}$$

$$(5)$$

•

•

•

•

:

$$Q ? \frac{C}{P} \stackrel{?}{\not{}_{\mathcal{Q}}} ? ?_{\mathcal{Q}F} \ln W_F ? ?_{\mathcal{Q}L} \ln W_L ? ?_{\mathcal{Q}K} \ln W_K ? ?_{\mathcal{Q}Q} \ln Q?$$
(6)

:

$$F ? \frac{C}{W_F} ? F ? ?_{FF} \ln W_F ? ?_{FL} \ln W_L ? ?_{FK} \ln W_K ? ?_{QF} \ln Q?$$
(7)

,

_

-

$$\left. ?_{F}^{W_{F}} ? \frac{?F}{?W_{F}} \cdot \frac{W_{F}}{F} \right|_{?Q?0} ? \frac{?}{?} \frac{?}{S_{F}} \frac{?}{?} S_{F} ? S_{F} ? 1$$
(8)

,

1998, 1998; 1985). :

$$\frac{?F}{?W_F} \Big|_{?Q?0} ? \frac{F}{W_F} S_F ? \frac{C}{W_F^2} ?_{FF} ? \frac{C}{W_F^2} S_F$$
(9)

$$\frac{?F}{?W_F} \Big|_{?Q?0} ? \frac{MC.S_F}{W_F} ? \frac{AC.?_{QF}}{W_F^2} \cdot \frac{?Q}{?W_F}$$
(10)

,
$$W_F$$
,

$$\mathbf{?}_{F}^{W_{F}} ? \frac{?F}{?W_{F}} \cdot \frac{W_{F}}{F} \Big|_{?Q?0} ? \frac{?F}{?W_{F}} \cdot \frac{W_{F}}{F} \Big|_{?Q?0} ? \mathbf{?}_{F}^{P_{F}} ? \frac{\mathbf{?}_{S}^{W_{F}}}{\mathbf{?}_{S}^{F}}$$
(11)

:

:

,

,

,

Cost function estimation results

2.

1.

,

(

Table 1. Descriptive statistics of variables used in estimation of elasticities.

,

,

	(1,000)			554.61	264.68	140.80	1034.20
	(1,000)			34.66	16.54	8.80	64.64
	(1,000)			17.33	8.27	4.40	32.32
	(1,000	,)	67.02	36.37	15.38	164.72
	(1,000	/)	,	100.49	196.16	0.12	845.67
	(1,000	,	ý		126.56	223.54	0.31	780.00
	(1,000)		137.48	268.64	0.23	860.00
	(1,000	/	,)	0.43	0.66	0.01	2.05
Note:	=29 Sources:	,	199	98-2	000;	, 1998	, 1999;	, 1998.
=					-			

Elasticity estimates

-

Table 2. Maize cost of production estimation results for Ghana usingseemingly unrelated regression, 1970–98.

•

•

0	0.726***	2	0.110
$\mathbf{?}_{F}$	(0.117)	• QF	(0.119)
	0.002	2	0.052***
?	(0.010)	• QL	(0.012)
	0.272**	2	-0.162
? _K	(0.115)	• QK	(0.126)
2	-0.077	2	-0.001
' Q	(0.209)	• <i>FT</i>	(0.004)
	-0.015**	2	0.000
$?_T$	(0.007)	• LT	(0.000)
0	0.125*	2	0.001
P_{FF}	(0.062)	• KT	(0.004)
•	-0.024***	2	0.984
? _{FL}	(0.005)	• QQ	(0.722)
-	-0.101	2	0.006
? _{FK}	(0.061)	• QT	(0.032)
-	0.050***	2	-0.002***
? _{LL}	(0.002)	• TT	(0.001)
	-0.026***		2.203***
? _{LK}	(0.006)		(0.116)
-	0.128**		
? _{KK}	(0.061)		
e e eta ata ata ata ata ata	; = 29		
* ** ***	0.10, 0.05,	0.01	, .

Table 3. Input demand, marginal cost, and supply elasticities for output price and fertilizer prices and quantities under the base case scenario.

	0.398	2.740	0.749
	0.554	0.067	0.379
	0.220	0 184	0 284
	0.220	0.104	0.204
	0.725	0.278	0.666
	0.569	0.074	0.357
	0.855	0.793	0.935
	0.137	0.127	0.150
	0.069	0.012	0.057
			0.16
(1,000/)			9.68
(1,000/)		68.89

 10%	10%	10%	10%	10%	10%
0.344	0.516	2.847	2.538	0.798	0.644
0.579	0.503	0.063	0.075	0.358	0.420
0.199	0.260	0.179	0.192	0.286	0.272
0.727	0.717	0.266	0.300	0.645	0.697
0.594	0.520	0.069	0.085	0.337	0.396
0.860	0.844	0.799	0.779	0.937	0.931
0.132	0.147	0.123	0.136	0.144	0.162
 0.070	0.067	0.011	0.015	0.052	0.069
				0.154	0.174
(1,000/	()		10.32	8.60
	(1,000)		76.07	56.68

(

,

).

Table 4. Input demand, marginal cost, and supply elasticities for
output price and fertilizer prices and quantities.

(..[?]_{QQ}?0).

,

,

(

1988)6.

3

,

0.725,

(

4).

)

.

,

(

,

,

.)

					2
	()	%		%	2
(000)					
	34.66	-15.4 (90.7)	29.46	22.4 (40.6)	42.29
3	17.33	-15.4 (-90.7)	14.73	22.4 (40.6)	21.14
	554.61	-23.5 (-81.2)	421.50	27.0 (88.5)	704.35
	()			
	6,769.10		5,802.34		8,258.30
	5,538.35		4,747.37		6,756.79
4	0.00		580.23		825.83
5	43,425.31	6	31,807.18 -11,618.13		<u>56,591.34</u> 13,166.04
2 ¹		•		,	
3	10%.				
4					
5	(11.6)		(13.2)

.

•

Table 5.	Partial analysis	of the incide	nce of a tax	x or a subsidy or	1
	fertilizer on the	maize subsec	tor ¹ .		

24%

11.62 10

,

,

406

).

(

•

-

-, . ,

Concluding comments

. , , , .

,

:

References

:

Public Budgeting and Finance 19: 76 89.

, . ., 1998. Microeconomics with calculus.

, . . 1974.

. American Journal of Agricultural Economics 55: 377 86.

, ., ., ., ., ., ., ., ., ., ., 1978. Duality, separability and functional structure: Theory and economic applications.

, . . 1988. Applied production analysis: The dual approach.

, . 1992. Duality and modern economics.

. Nyankpala Agricultural Research Report No. 10.

. 2000. Food and Agricultural Organization of the United Nations (FAO) Statistics.

, . ., ., . 1994.

. Review of Agricultural Economics 16(2): 215 230.

(). 1995. Ghana fertilizer privatization scheme. Private sector roles and public sector responsibilities in meeting needs of farmers. (). 1999. The state of the economy , 1999. in1998. , . 1997. Elements of econometrics. : . American Journal of Agricultural *Economics* 70: 867 74. , . . 1998. . American Journal of Agricultural Economics 62: 38 45. • . 1989. , ·, . American Journal of Agricultural *Economics*. 71(4): 847 857. . 1994. , . . . American Journal of Agricultural Economics 76: 61 73. . 1985. Microeconomic theory: Basic principles and extension. : , . ., 2000. . The Journal of Modern African *Studies* 38 (2): 255 278. (). 1998. **Annual** sample survey of agriculture. Regional and district cropped area, yield and production estimates, 1998. , . ., 1982. , 1939 77. American Journal of Agricultural *Economics* 64: 490 98. , . . 1994. . Bulletin of Indonesian *Economic Studies* 30 (1): 59 83. . Journal of Agricultural Economics 41(3): 327 345. 1990. The structure of economics: A mathematical analysis. . - ,

Recent advances in the development and promotion of quality protein maize in Ghana

P.Y.K. Sallah, K. Obeng-Antwi, E.A. Asiedu, M.B. Ewool, and B.D. Dzah

Crops Research Institute, CSIR, P.O. Box 3785, Kumasi, Ghana. Sasakawa Global 2000, CRI, P.O. Box 3785, Kumasi, Ghana.

Abstract

Résumé

Introduction

(Zea mays .)

,

•

50%

(, 1997).

•

,

.

•

Kwashiorkor.

Institutional role in QPM development and promotion

Historical background of QPM development in Ghana

.

Recent advances in QPM variety development in Ghana

		-		
-2	. 1993)	(()	
,	1989. 62,	63	,	
		,		
	, ,	,	,	
(105, 110	63	, - 3363-	, 	-
	- ,	, , ,	0),
,	· , (,	· · ·	,)	
	92. 3-	1991 19 1), 830	(
	, 8363-		5.5 /	
() . 1997 ;	(. 1992).	3.5 /	
(3.0 /	/ , 3.0 /	3.2	

). ,

-

- . 8363- Obatanpa Good Nursing Mother 1992.

Table 1. Essential amino acid contents of quality protein maize
(QPM) and normal maize varieties in Ghana and amino acid
requirements for children and adults.

			-		1-	-
	-		/	100		
+		3.50 4.21 4.93 3.08	2.47 3.70 3.39 2.36	2.78 5.02 5.25 3.42	4.3 4.2 5.5 4.6	2.5 2.5 3.5 3.5
+		9.05 7.40 3.60 3.70	7.92 6.59 2.26 2.36	11.43 5.61 3.66 3.10	9.3 7.2 2.6 6.6	6.5 6.5 - 5.0
/ (%)		1.03 2.93 9.73	0.62 3.35 9.86	0.61 3.34 9.87	1.7	1.0
/ (19	991) (1991)					
				-		,
	1991,			62	63	
1995	1997 (,	-	-	. 199	7).	,
1997).	20	1995	- 5 19	, 996 (-	-	,
(), Mam	aba (6.8, 7.3) 6.3	CIDA-E / ,	Dadaba ba (
	1997 (-	. 199	7).	

Current programs and achievements

.

Development of extra-early and early QPM

,

- (75 80) (90 95)

(. 1997)

.

Development of yellow QPM varieties

.

Table 2. Grain yield and agronomic traits of early and extra-early
maturing maize varieties evaluated at 6 locations during
the 2000 major season.

.

			-			
		/				%
9190		5805	48	190	2.0	27
		5767	53	214	2.2	36
-2		5545	49	199	2.3	31
90		5507	47	201	2.2	25
		5237	49	195	2.2	22
90		5227	48	191	2.2	24
9980	-	5220	45	187	2.7	31
9980	-	4987	45	188	2.5	40
16		4752	47	184	2.6	29
		4502	46	191	2.5	39
		4071	59	221	2.8	30
-		3747	47	193	3.1	33
		5031	49	196	2.4	31
(0.05)		349.1	0.8	7.9	0.3	6.9
(%)		3.3	2.8	7.1	18.9	39.0

Table 3. Grain yield and agronomic traits of medium-late maturing
maize varieties evaluated at 6 locations during the 2000
major season.

		-			
	/				%
(3 1368) 5012	6907	54	221	2.5	19
132-28	6435	55	216	2.3	28
	6313	57	223	2.4	19
	6244	53	227	2.3	28
8321-18	6155	55	213	2.3	34
2328-88	6123	52	201	2.3	20
(28 1368) 5012	6076	55	215	2.6	30
110-28	6036	53	205	2.3	32
	6000	58	246	2.2	26
110-5	5874	52	189	2.5	47
	5305	54	195	2.3	23
	5081	54	251	2.4	30
9866	4853	52	208	2.5	31
474	4831	54	205	2.7	19
454	4771	54	196	2.8	26
	3949	57	238	2.7	26
	5685	55	215	2.4	27
(0.05)	504	1.0	99	0.3	70
(%)	15.6	2.2	9.9 8 1	10.5	45 1
(70)	10.0	5.5	0.1	19.0	70.1

Hybrid development

,

.

_

Line development in GH 9163 SR and in EV 8762 SR populations. 62 63

, 1997 6 5 9163 8762 , 10 3 9163 9963-10 8762 9962 -, 8762 3 9962 -.

,

1

Conversion of popular normal maize inbreds to QPM.

Striga				,	1997	
1368,	10-1, 4058,	301	5	20, 907	22, 1.	24,

Improvement of released QPM lines.

,

,	5,	6,	24,	27,	70,	88,	23,
20		-		-	1997.	,	,
		,					
,			,		, 1998		
			,				

,

:

Promotion of QPM

.

On-farm demonstrations. -

2000, - , .

Sensory evaluations.

,

, 2000.

,

()

,

,

,

(. 1995; 1999).

Infant feeding studies.

, . 1994; . 1994 , 1994 , 1994). (() , () ,() 16 13.9 5.9 () 29.4% , 18.0, 12.6, 12.8% , , , , (. 1994; .

, .

1994 , 1994 , 1994).

Production of breeder's seed

Distribution of Fact Sheets.

.

Demonstrations of nutritive value. ()
()
()

,

.

,

,

Impact of QPM technology in Ghana

,

.

,

,

Adoption of improved maize varieties.

, 90% . , , 90% . , 1000 1400 1998. , . 1997, 21%

. 1997, 650 000 (. 1999).

Seed industry development.

:

Increased job opportunity.

, -

Increased utilization of maize.

.

1992, 703 600 1998 (, 1999).

.

,

Increased production and consumption of maize.

,

55 / / .

Utilization of maize by industries.

.

.

2000/2001

,

Impact of Ghana's QPM in other countries

•

.

12.0	20.0	1998
1999,		

.

,

1350 2000

1994,

.

1996

Plans for future QPM research and extension

.

44		,	
			;
??	Striga		;
??	-	;	

??		,		
??	,	;		
??	;	;	,	,

/

Conclusion

· - , , , · - , , . . , .

.

; 2000 , , , , , , ; -

; ; .

Acknowledgements

- ().

References

: Cereal Res. Commun. 23: 299 304. - , . . . , . . -. 1999. . Food and Nutr. Bull. 20: 354 360. / (). 1991. Protein quality evaluation. : : . 61. . ., . . , , . . , 1964. . Science 145: 279 280. , 1988. Preliminary report on evaluation of weaning food production project. , , impacts of improved maize production technology: A case study of the Ghana Grains Development Project. 99 01. , . .: . . ., . . , . . , . , , . Proc. Ghana Anim. Sci. Symp. 22: 37 43. , . . 1997. . 108-119 . - , . . , . , . . (.) Contributing to food self-sufficiency: maize research and development in West and Central Africa. 29 2, 1995, -/ . . , . Proc. Ghana Anim. Sci. Symp. 22: 31 36.

, ,

. 1999. Production estimates of some major crops in Ghana: 1970–1997. , & , , . •

, . . ., . – 1997 .

. 173 178 . - , . . , . , . . (.) **Contributing to** food self-sufficiency: maize research and development in West and Central Africa.

29- 2, 1995, -/ .

,...,. - ,... ,.. - , . 1997 . Development and release of Dodzi, an extra-early maturing maize variety in Ghana.

. 23 ,

1992. Development and release of Obatanpa, an intermediate maturing quality protein maize variety in , . . 19 . Ghana.

Development and release of three quality protein maize hybrid varieties, Dadaba, Mamaba and CIDA-ba in . . . 31 . Ghana.

> , ., ...

. 140-148 . - , . . (.)

, . Contributing to food self-sufficiency: maize research and development in West and Central Africa.

, 29- 2, 1995, -. / . ,

, · , · , · , · , , . ., 1993. : . **Crop Sci**. 33: 46

51.

. **J. Nutri**. 121:145 150.

55.

Factors affecting maize grain quality and fumonisin content in some villages of the western highlands of Cameroon

Z. Ngoko¹, K.F. Cardwell^{*2}, F. Schulthess², W.F.O. Marasas³, J.P. Rheeder³, G.S. Shephard³, and M.J. Wingfield⁴

 ¹IRAD Box 80, Bamenda, Cameroon
 ²I I T A, Cotonou, Republic of Benin
 ³Programme on Mycotoxins and Experimental Carcinogenesis, Medical Research Council, PO Box 19070, Tygerberg, South Africa 7505
 ⁴Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Biological and Agricultural Sciences, University of Pretoria, Pretoria, South Africa 0002.

Abstract

Résumé

Introduction

	,		(
1994;	. 1992;	. 1990;	·	. 1988;
19	95, 1996, 1997;		. 1988;	
1992;	. 1993;	. 199	92, 1995;	
. 1990;	. 1991;	1993;	, 1980;	
1992).				

Apergillus flavus : .

(1997) (1998).

, , , , .

, () .

Methods

Sample collection

36 (, ,) 1997.

. (1996).

2600 . 1000 1500 18º 35º . , , 1500-2000 , 1000 . , 1500

, 18⁰ 30⁰ . ,

Fumonisin analysis

.

()- - (

,

2500

1100

.

_

. 70/8830, .; , , 3 / 2 50). (70:30). 10 _ , 10 , () 650 301 , , , ,

Data analysis

.

5 , 3 (, 1993).

Results

Fumonisin contamination

36 , 32 0 8000 / . 500 / .

Farming practices

(Musa accuminata)

Harvest period				
•	6.9	17.6	8.8	11.1
	13.6	56.5	10.7	23.6
	77.5	25.6	78.6	63.9
	2.0	0.3	1.9	1.4
Cleaning stores				
	90.1	88.9	78.9	85.9
/	9.9	11.1	21.1	14.1
Harvesting				
	80.4	85.6	90.7	85.6
	3.2	1.4	3.0	2.5
	16.4	13.0	6.3	11.9
Sorting				
	21.3	18.2	10.6	16.7
/	78.7	81.8	89.4	83.3
/	21.5	30.6	26.1	26.1
/	18.9	18.4	13.4	16.9
	35.2	14.1	4.6	17.9
	24.4	36.9	55.9	39.1
Storing				
	42.1	54.0	51.9	49.3
	33.5	18.0	7.0	19.3
	14.4	4.8	11.1	10.1
/	7.5	12.9	9.4	9.9
	2.5	10.3	20.6	11.4
Period of drying				
1	67.9	80.0	50.1	66.0
2	20.2	15.3	33.5	23.0
>2	11.9	4.7	16.4	11.0
Use of bad maize				
	34.2	30.7	35.0	33.3
	19.0	23.0	18.0	20.0
	11.4	9.9	8.7	10.0
	35.4	35.4	38.3	36.7

(

),

Table 1. Farmers' agricultural practices in three villages of the western highlands of Cameroon, 1997 (n = 12 per location).

(77.8	%)	

,

,

/

, (;

1).

.

•

•

• 33.3% , , 20% • , , 10% (36.6%) (1); : () (19.4%); (16.7%); (33.3%); (18.1%). (66%) (23%) 11% ; (88.9%) 50% . (), .). (Cypressus / • 1). (70.6%) (18.0 % 20% • 31.0% (9.7%) (9.7%). ; 79.2% 12.5% , 16.7% , 80.6% 50% ,8% 41%). (, ((27.4 %),). (44.4%),

(13.9%) 11.1%

Analysis of factors affecting fumonisin contamination in WHL

•

Table 2. Parameters from a stepwise multiple regression analysis
(backward selection) of crop management factors affecting
fumonisin contamination of maize in the Western
Highlands of Cameroon in 1997.

			-	-	>
			-170.5	3.54	0.001
		-264.5		2.31	0.006
Sitophilus ze	eamais		81.9	0.66	0.012
			-672.5	0.81	0.033
			-130.4	0.44	0.041
			-81.9	0.45	0.052
			249.8	0.31	0.149
			-470.1	-1.33	0.192
			938.7	-1.14	0.259
			-329.5	0.10	0.359
			56.2	0.61	0.530
		145.0	23.2	0.80	0.701
	0	= 145.0			
	2	= 0.75			
	-	- 0.03			
			(- 0.0	01)	(- 0.006)
			(- 0.0	01)	(= 0.000)
	Sitophili		maio	•	,
	Suophili	is zeur	nuis	0.0010)	(.
),		(=	0.0012)	
					(0.020)
			,	0.041)	(=0.033).
			(= 0.041)	
		•			
			,		
(= 0.052).					
	,			(> 0.0	05)
				-	
			(
)			(,	,
,					·
	,				

.

1997 3.

432

Table 3. Summary of potential factors affecting fumonisin
contamination of maize from rural areas of the Western
Highlands of Cameroon, 1997.

Discussion

,

.

(1998)

•

.

, S. zeamais .

. (1998) Mussidia nigrivenella (:) & Busseola fusca (1992) (: F.) S. zeamais , moniliforme. B. fusca

.

.

. (1994), (1997) (1998)

· , , .

,

, A. flavus 1 . . 1 1 . . 1 1 . . 1 1 . . A. flavus A. flavus

A. parasiticus 1997 Aspergillus spp. a

> -. 1997

> > . 20 25º 70%.

· , . 1997.

•

433

,

_

Fusarium (1992).

, 51% 1994). F. moniliforme

, , (1998) (1997) Aspergillus flavus

A. flavus

_

,

,

Khaya senegalensis

,

(

,

Recommendations

,

To the Institute of Agricultural Research for Development (IRAD)

.

To the extension services and farmers

•

.

.

•

.

,

Acknowledgements

99/131/ . . .

References

. .. 1994. ,

. Transaction of the Royal Society of Tropical Medicine and Hygiene 86:426 430.

, . ., 1996. . 32 . . (.) Proceedings of the Workshop on Mycotoxins in Food in Africa, : ,

- , . . 1996.

. 44 45 ... (.) Proceedings of the Workshop on Mycotoxins in Food in Africa, ; , .

- , . ., . . . Revue Science et Technique 2: 5

16.

, . 1971. The Genus Fusarium. : , ,

, . .

(Prostephamus

International Working Conference on Stored Product Protection, , .

A.flavus , ... International Working Conference on Stored Product Protection, , Agriculture, Ecosystem & Environment 65: 33 47. , . ., . . . , 1987. , . 147-154 . . (.) Proceedings of the 11th Congress of Plant Protection . , , . , . , 1 , ., . . , . , . , . , . , . . Cancer **Research** 50: 2156 2163. , . ., . . . , 1992. Busseola Fusarium fusca moniliforme Stenocarpella maydis. South African Journal of Plant and Soil 9: 177-179.

Fusarium moniliforme. Applied Environmental Microbiology 54:1806 1811.

. 1993. GENSTAT 5 Release 3 Reference Manual, . 796 .

, . 1998.

. Ph.D. Dissertation:

: , , .

, . , ., . , . 1995. , . , . . . Fusarium proliferate

Plant Disease 79: 727 731.

- , . 1994.
 - . Experimental Agriculture 30: 45 55.

, . . . 1995.

. Natural Toxins 3:193 198.

, . . . 1997. *Fusarium moniliforme . Cereal Research Communications* 25: 399 406.

Medical Journal 74: 110 114.

, . 1999.

. Ph.D Thesis.

(.) Proceedings of the Workshop on Mycotoxins in Food in **Africa**, : , .

, . . 1981. . Economic Development and Cultural Change 9: 723 739.

moniliforme

. **Phytopathology** 82: 353 357.

,

Journal of Veterinary Diagnostic Investigations 5: 69 74. Mussidia nigrivenella (flavus (:), Aspergillus

Journal Economic Entomology 91: 433 435.

, . ., . . , 1992. ¹ . Food and Chemical Toxicology 30: 277 279.

1995.

. Journal of Agricultural and Food Chemistry 38: 1900 1903.

. Journal of Agricultural and Food Chemistry 39: 109 111.

, . . 1997.

Ph.D Thesis:

, . . 1993.

. African Newsletter on Occupational Health and Safety 2: 24 31. , . . 1980. : . Cancer Research 40: 2633 2544.

, .

. Carcinogenesis 13: 891 894.

•

Qualité comparée des grains de maïs béninois issus des écotypes locaux et des cultivars améliorés : mise au point de tests rapides de sélection

C. Mestres¹, M. Nago², J. Hounhouigan², et N. Akissoë² ¹CIRAD-CA/CERNA-UNB ²UNB/FSA, DAVRIEUX Fabrice, CIRAD-CP

Résumé

Abstract

Introduction

,

Aptitude des maïs aux différents modes de transformation utilisés au Bénin ; intérêt du test de friabilité

	, (1990):
-	50 %		, ,	
-	,	35 %		,
-	15 %		,	

La production de lifin

.

.

,

,

.

Figure 1. Relation entre friabilité et finesse des farines de maïs (lifin).

La production de mawè et de gritz

Figure 3. Relation entre friabilité et rendement en grits.

La friabilité comme test de sélection

Un outil très rapide : la Spectrométrie dans le Proche InfraRouge (SPIR)

Principe et mise au point et développement d'une calibration.

(800 2500),

- ;

Fig. 4. Exemple de SPIR de grains de maïs

300

355

Application au maïs

,

, (50)	
:	(, 1).	,

Tableau 1. Calibration SPIR sur maïs.

.

200	0,9	1,3
209	0,7	0,8
340	0,3	0,5
355	0,1	0,3
213	2,0	2,8

200

,

Figure 5. Corrélations entre friabilité prédite et mesurée pour les 30 échantillons de validation.

Les potentialités de la SPIR comme outil de sélection

Bibliographie

, . 1991.

de la Recherche Agronomique du Bénin 2:6-9.

, . 1989. Maize research in Malawi: lessons from failure, 112 144. . 1.

. Journal of Agricultural and Food Chemistry 45:555 564.

. Journal of

Cereal Science 28:215 22.

, . 1993.

Le progrès génétique passe-t-il par le repérage et l'inventaire des gènes ? - : ()

? Bulletin

Utilisation du maïs en patisserie au Mali

B.A. Bengaly

Laboratoire de Technologie Alimentaire IER, BP 2058, Bamako, Mali

Résumé

Abstract

Introduction

.

1)	•		
		;	

2) •

Materiels et Méthodes

		8	, 1996	
		•		
			:	,
,	,		,	

15, 30, 50%. , .

) (() (180 200). , , , •

Resultats

=

,

448

					-
3	2	3	4	3	4
9	9	9	9	9	9
6.07	6.91	6.18	7.15	5.73	5.16
1.01	0.97	1.67	1.54	1.32	1.13
0.78	0.56	0.83	0.67	0.61	0.78

Tableau 1. Paramètres statistiques de l'évaluation sensorielle du moka à 100% blé.

•

Tableau 2. Paramètres statistiques de l'évaluation sensorielle du moka à 15% de maïs.

	2	2	3	5	6	6
	9	9	9	9	9	9
	6.48	6.69	6.6	7.21	6.73	6.56
	1.71	1.43	1.45	1.34	1.20	1.76
	1.12	0.87	0.23	1	1.1	1.3
9=	, 8	=		, 7 =		
6= 2-	, 5=		, 4= 1-			,
3-	, 2-		, 1–			

Tableau 3. Paramètres statistiques de l'évaluation du moka à 30% de maïs.

					-
2	4	4	4	5	5
9	9	7	9	8	8
7.13	6.45	7.46	7.18	6.92	6.82
1.67	0.98	0.76	0.78	0.34	1.18
 1	2	5.18	1.45	1.98	0.78

.

. 50%

					-
4	5	7	5	7	6
9	9	9	9	9	9
8.02	7.58	7.87	7.56	7.92	8.32
1.67	0.98	0.76	0.78	0.34	1.18
0.89	0.77	1.78	2.10	1.03	0.55

Tableau 4. Paramètres statistiques de l'évaluation du moka à 50% de maïs.

50%

.

50%).

(15%, 30%,

Analyse de marché

9.

Tableau 5. Paramètres statistiques de l'évaluation du croissant de
blé pur.

					-
 4	4	4	5	6	6
9	8	8	8	9	9
6.85	5.89	6.76	5.56	7.13	7.67
1.23	1.65	1.85	1.98	1.47	1.24
1.12	1.45	4.61	1.54	1.71	2.32

30% ;

•

50%

					-
5	4	4	5	5	6
9	9	8	9	9	9
6.13	5.17	6.12	5.32	7.06	6.77
1.04	2.42	1.66	1.76	1.33	1.17
2.15	2.13	1.45	1.19	1.71	0.97

Tableau 6. Paramètres statistiques de l'évaluation du croissant à15% maïs.

Tableau 7. Paramètres statistiques de l'évaluation du croissant à
15% maïs.

					-
 4	4	4	6	6	6
9	9	8	9	9	9
6.23	5.34	6.55	5.12	6.65	6.45
1.8	1.95	1.78	1.73	1.86	1.26
2.34	1.65	0.97	0.89	0.89	1.12

Tableau 8. Paramètres statistiques de l'évaluation du croissant à
30% maïs.

					-
3	4	3	4	5	5
9	9	8	7	7	8
5.98	5.12	6.15	5	6.62	6.39
1.23	1.62	1.55	1.44	1.34	1.11
 1.56	1.17	0.75	1.13	0.55	1.12

					-
2	4	2	4	2	4
3	4	3	4	3	4
8	8	8	7	7	8
5.77	5.07	6.03	5.01	6.22	6.11
1.09	1.31	1.42	1.14	1.12	1.02
1.66	2.31	0.99	1.05	1.89	2.57

Tableau	9.	Paramètres	statistiques	de	l'évaluation	du	croissant	à
	50)% maïs.	_					

Évaluation du coût des différents produits

Table 10. Coût- bénéfice de la préparation des	pâtisseries
de farine composée et de blépure.	

		100% BLE		Farine composee			
Patisseries	Gâteaux	Croissants	Moka	Gâteaux	Croissants	Moka	
Quantité de blé(g) Quantité de la farine	50	50	50	40	40	4	
de mais (g) Coût de la farine de	0	0	0	10	10	1	
blé(FCFA) Coût de la farine de	15 000	15 000	15 000	12000	12000	1200	
sorgho(FCFA) Coût des ingrédients	0	0	0	2000	2000	200	
(CFA)	2200	2275	8813	2000	2275	881	
Total coût (x)(CFA) Nom bre de produits	17 200 3000	17 275 2500	23 813 1002	14 000 3000	14 275 2500	2281 100	
Revenue provenant des produits (y)(CFA) Bénéfice net (CFA)	60 000 42 800	50 000 32725	40080 16 267	60 000 46 000	50 000 35 725	4008 17 26	

Conclusion

50	07
50	%

, • •

Bibliographie

, ., . . 1998.

,

. African Crop Science Journal 6(1):1 7.

, . . , . .

Mechanization of maize degerming for mawe production

D.J. Hounhouigan¹, H.G. Sekpe¹ A.P. Kayodé¹, C. Mestres², and C.M. Nago¹,

¹Faculté des Sciences Agronomiques, Université Nationale du Bénin, 01 BP 526 Cotonou, Bénin. ²CIRAD-CA,BP 5035, 34032 Montpellier cedex 1

Abstract

Résumé

Introduction

. - , . , . 1999).

. 1993). .

.

•

,

2

Materials and Methods

(, , , - -), (. 1997) . ()

Conditioning. 13 15 13%

-

: = (-) / 100 - , = ; = , = , = , = , =

13%

Dehulling and Degerming: 2 (,,).

1450 . 36 . :

Mawè production.

. (1993) 13 15 . 4

72 . - .

Performance measurements

.

•

/ 3600, = (), = (). () :

Chemical analysis

. (1993). , , , (1984).

,

•

.

;

,

(1978).

Physical analysis

		. (1993),
90, 250	355		

Results and Discussion

1 2 . , (39.6%) (74%) (70%).

Table 1. Effect of residence time and sample size on fine grit yieldsof three maize varieties produced from the Maquinadegermer compared with the traditional processingmethod.

			(%)
	()	13	15	
-	6	56.2 ()	53.6 ()	
	7	60.3 ()	58.8 ()	64.9
	6	59.9	61.5	
	7	59.1	61.5	66.7
	6	39.6	42.8	
	7	-		-

			(%)	
-		() 13 6 73.1 () 7 67.7 () 6 65.6 () 7 63.0 () 6 39.6 () 7 -	15 74.1 () 68.7 () 64.9 70.2 () 66.2 () 66.7 42.8 ()	
,	6		; , 7	
(et al.,	1997 ;	, , . 1999).	,
(. 1978;	, 1991).	
(15	/6)	15 /6 70 74%.	66%)
		(. 1999).	,
			-	
	(15 /7 3).		13 /7

Table 2. Effect of residence time and sample size on total grit yieldsof three maize varieties produced from the Maquinadegermer compared with the traditional processingmethod.

Table 3.	Efficiency	of the l	Maguina	d'Andrea	degermer	under	the	best
	operating	condit	ions.					

Type of mawè	Energy consumption (kWh/kg)	Grityield (%w/w)	Fat (%)	Degerming rate (%)	Dehulling rate (%)	Unbroken grit (%w/w)
15 /7	0.05	66.2	0.9	78.7	89.3	4.7
13 /7	0.05	67.7	0.8	82.2	86.8	7.4

Table 4. Particle size distribution of traditional mawè and maquinamawè at different soaking duration.

.

()		> 355	250 ?	< 355	90 ?	< 25	50 < 90
Mawè 4hrs								
(Traditional)			5.5	4	.4	1	19.7	70.4
6			15,3	3	.8	-	20,5	60,4
8			14.4	8	.6		20.4	56.6
10			14.0	8	.6		18.6	58.8
12			12.2	4	.6		20.4	62.8
12 March 15 have				, ~	,0			70.1
mawe 15 nrs			3,0	3	,4 10	ļ	1 8,9	70,1 70,7
49			2,0	т, 1	6		41,0 10,1	70,7
40			3,9	4	,0		19,1	12,4
	5.	* ().),	*	?	(
			,	(. 1993).

Table 5. Comparison of colour parameters of traditional and maquina-mawè.

				<u> </u>
*	80.6?0.0	89.8?0.4	83.9?0.1	90.6?0.1
*	2.7?0.1	2.6?0.0	2.1?0.05	1.7?0.0
*	12.6?0.5	10.2?0.2	8.3?0.0	5.1?0.1
?	26.5? 0.0	18.6?0.1	21.3?0.1	14.1?0.1

^{(6). (- 95)}

(- 95)

•

				-	
	76.1?0.3	87.9?2.0	54.5?0.7	62.5	5?2.0
95	57.1?0.0	68.6?1.3	45.4?0.5	53.6	5?1.6
	91.6?0.0	109.4?2.2	78.0?1.2	93.5	5?2.2
- 95	19	19.3	9.1	8.	9
- 95	39.9	40.8	32.6	39	.9
= 95 , , -	= 95 =		, 95 = 50 ,	- 95 =	15
1997).	(. 1987	7).	(
-	(1992)			et al. (1	1998)
				(7).
		3.4.			
				3.6	4.2
(. 19	93).			
(3.5	4.5) (1972;	1970)).
			, (7).	
		1%		4.7%	, 0.9

,

•

. -

.

.

.

 Table 6. Comparative study of pasting characteristics of traditional and maquina-mawe.

Conclusion

	3.4?0.0	3.3?0.0	3.4?0.0	3.3?0.0	-	-
	2.1?0.01	2.3?0.02	2.1?0.02	2.3?0.02		
(%)	9.4?0.04	9.1?0.14	9.8?0.1	9.6?0.11	10.8?0.0	10.6?0.0
(%)	1.2?0.01	0.9?0.0	1.1?0.03	0.8?0.0	4.7?0.0	4.5?0.0
(%)	0.7?0.02	0.5?0.01	0.8?0.02	0.6?0.02	1.1?0.0	2.0?0.0
(%)	0.32?0.00	0.33?0.02	0.36?0.02	0.34?0.01	1.5?0.0	0.5?0.0
(%)	88.4	89.2	87.9	88.6	81.9	82.4

 Table 7. Proximate composition of corn, traditional and maquina-mawe.

Aknowledgement

.

/

.

References

. 1984. Approved methods of the American Association of Cereal Chemists, 8 , . , , , , 1987. . J Food Process. Preserv. 11:1-11. , . . 1970. - J. Sc. *Food Agric*., 21: 619 625. , . . ., . . . , 1972. (): . Canadian Inst. Food Sc. Technol. **J**., 5 (4):217 221. , .,1995. . Rapport de stage. _ , ., 1991. 397 421 . (.) Les industries de premières transformations des céréales. Collection technique et Documentation. . , , . Inter. J. Food Sc. Technol., 28 : 513 517. . ., . . . , . . , . . . 1993 . . **J.** *Cereal Sci*. 17(3): 291 300. . Annales des Sciences Agronomiques **du Bénin** 2:99 113. , . . 1999. . Thèse d'Ingénieur Agronome, / . - , , 128 .

, ., . , . , . , . . . 1978.

.

_

. *J. Food Sci. Technol*. 15 : 1 6.

, . . 1989. et al : ,

. Document FSA/UNB, - , .

(), 1992. (.) Alimentation, techniques et innovations dans les régions tropicales.

, . .1997.

:

; **D'Etat**. . 201 . ; **Thèse de Doctorat** 7 . 201 .

Journal of Cereal Science 28, 215 222.

of Agricultural and Food Chemistry 45: 555 564.

. Intern. J. Food Sci. Technol. 25: 220 225.

Effect of synthetic and botanical products on seed viability and seedling vigor of maize from two agro-ecological zones of Cameroon

C.G. Zonkeng, A. Tagne, C. Thé, and P. Feudjio

Institute of Agricultural Research for Development (IRAD) P.O. Box 2067 Yaounde, Cameroon Fax: (237) 222 59 24 E-mail: czonkeng@hotmail.com/c.the@iccnet.cm

Abstract

Résumé

Introduction

() (Zea mays) , (1995) 2.0 / (1998). 750 000 , ; 30 000 (.1999). - .

.

	Azaanachia	inaica	
(1996)			A. indica

)

(

466

()

: (, ,

Table 1. Mean squares from orthogonal contrasts for germinationpercentage between groups of treatments applied to maizeseed harvested from the humid forest zone of Cameroonand stored for different periods in 2000.

	120	150	180	() 210	240
+ + +	0.188^^	0.651^	0.743**	0.942**	0.988**
(+) (+) (+ + +)	0.445	0.432	0.255	-1.409	0.734
+ +	0.560	4.502**	9.618**	11.468**	11.368**
(+) +(+) +	-0.498	-2.234	-4.279**	-3.412**	-4.468**
*, ** = 0 = 50 ,).05 =	= 0.01 2%	, =	35	5 , =

Fig. 1. Germination % of humid forest maize seeds as influenced by seed dressing and length of storage period.

Table 2. Effects of chemical seed treatment, dosage, and length of the storage period on the germination percentage of maize seed harvested from the humid for

						()		
				120	150	180	210	240
		50	1	2.7	2.5	4.7	5.8	7.3
()		2	3.0	2.3	4.2	3.8	4.0
			3	3.0	2.0	4.3	4.3	5.3
			4	2.3	2.3	3.0	4.0	11.0
		2%	1	3.8	3.5	2.8	5.3	7.0
()		2	3.3	3.7	3.5	3.5	6.3
			3	2.5	3.0	3.3	4.8	9.8
			4	2.3	3.0	4.5	4.0	9.0
		35	1	3.3	3.3	5.0	6.3	8.5
()		2	2.3	2.5	8.5	6.8	8.0
	-		3	1.8	3.0	4.8	9.5	8.5
			4	1.8	2.3	4.0	2.8	11.0
	+		1	2.0	2.5	3.3	2.8	7.8
(+)	2	2.0	3.0	5.0	3.3	7.5
			3	2.0	4.5	4.3	3.8	6.0
			4	1.5	3.0	3.5	4.5	7.5
				3.0	4.5	3.8	2.3	4.3
				2.5	2.8	4.3	4.5	7.5
				46.6	30.6	34.7	38.3	30.7
	(0	.05)						
	1=			(10	/1	20 <u>2</u> 0	200	, 50
		100	, 800		100	, 60		100
).	2=0.5	1, 3=21,	4=0.03 %		•	,	
	0.0	5						

Table 3. Effects of chemical seed treatment, dosage, and length of the
storage period on the percentage of abnormal seedlings of maize
seed harvested from the humid forest of Cameroon in 2000.

Table 4. Effects of chemical seed treatment, dosage, and length of the storage period on the height (cm) of seedlings of maize seed harvested from the humid forest of Cameroon in 2000.

					()	
		120	150	180	210	240
50	1	5.4	3.8	6.2	6.6	8.6
					()	
----	---	-----	-----	------	------	------
	-	120	150	180	210	240
50	1	9.8	9.4	10.2	10.8	10.8

Table 5. Effects of chemical seed treatment, dosage, and length of the
storage period on the radicle length (cm) of seedlings of maize
seed harvested from the humid forest of Cameroon in 2000.

.

,

,

Fig. 2. Effect of seed dressing and storage period on the germination percentage of maize seeds harvested from the savanna zone of Cameroon.

				()	
	120	150	180	210	240
	1.0	5.3	7.0	7.8	5.5
	4.0	3.0	7.8	6.5	6.0
25	0.5	2.8	3.0	4.5	3.5
	1.5	3.5	3.5	6.8	5.8
	1.0	5.3	4.8	7.0	6.5
+	1.0	3.5	5.3	2.5	1.8
O. gratissimum T. vulgaris	$2.5 \\ 2.0$	4.5	4.3	2.5	7.5

 Table 8. Effects of seed treatment and length of the storage period on the percentage of abnormal seedlings of maize seed harvested from the savana zone of Cameroon in 2000.

	. A. indica		73.3
240-		,	

Table 9. Effects of seed treatment and length of the storage period on the seedling height (cm) of maize seed harvested from the savana zone of Cameroon in 2000.

120	150	180	210	240	
2 5	4.0				
5.5	4.2				

Conclusion

References

.

(Cymbopogom citratus). International Biodeterioration and Biodegradation: 81 84.

, . . 1989. . **Ann. Appl. Biol**. 115: 451 453.

. 1998. Bulletin trimestriel de statistiques .11 3/4.

, ., . , . , . . . 1996. Manuel sur la manutention et conservation des grains après récolte. ().368

, . . 1993.

- , ., . - . 1981. . Plant Disease 65(3):260 261

. 1994. Annual Report.

, . ., 1995.

. 108 119 . -(.) , .. Contributing to food self-sufficiency: Maize research and development in West and Central Africa. , 29 2 1995, , ,

, ., 1987.

. Seed

Research 5(1) : 52 60.

de la filière maïs au Cameroon.

, . 1995.

. In . - , . . , . . (.) Contributing to , . food self-sufficiency: Maize research and development in West and Central Africa. ,

29 2 1995, , , .

		-		:				
??			,					(
??).					
??				•		"	"	
				•			,	
??			·					
		•						
??		(:)			,	
??	()			•			
??						,		
??		·					,	
??			,					
??							,	

Description of the dehumidified dryer

Seed storage experiment

.

, 200 (0.2 726 10) , 100 200 11.0% 72 (0.2). 144 , (10? /80% . .) (21 31? /68 86% . .) 18 • :

1. 8.0%

. .).

(21 31? /68-86%

,

Matériels et Méthodes

Matériels

•

,

_

			:	8602	: 84 202 .
		-			
			,		
,			•		
,	:	,			:
•					

(

), ,

.

,

:

,

,

; ;

,

,

478

,

Méthodes

: 3 110 .

.

. . .

, .

- , . . , . . ()

- , , , ; , , - ,

,

,

.

,

,

. 10% .

Mise au point des produits finis: Le « douédé .

Le «kissar»

, . . 48 , .

· , , , , , , . 4 .

Le beignet.

,

,

Le biscuit

.

```
60; 20; 12 8%.
```

,

Résultats et Discussion

• •

Caractéristiques physico-chimiques et technologiques

Tableau 1. Caractéristiques physico-chimiques des variétés de maïs utilisées.

84	202	% 11,18 10,26 9,69	- 49,50 48,70 44,80	% 75 80 85		97 98 98	10 () 20 16 20	00 6,24 4,08 8,07
	Ę	3 24 51,02%						, ,
Le « a	loué 3(dé »)% ,		,			,	70%
10,019	: 12,9 %).	96%;	3 8602 : (11,09%) , 2).	(84	202 : ,	13,13%;

Tableau	2.	Paramètres	Technologiques	des	«douédés	» mixtes	par
	ra	pport au « do	uédé » à base de l	blé p	ur.		

					*
		()	*	(%)	
84 202	300	165	260,61	13,13	
8602	300	165	265,94	12,09	
	300	165	261,10	12,93	
	300	165	273,92	10,01	

.

,

,

.

Tableau 3. Résultats des tests de cuisson des "douédés mixtes"comparés au témoin.

Variétés	Pl* douédé (g)	Vol eau de cuisson (ml)	PF(**) douédé (g)	PF/PI	Couleur après cuisson	Aspect eau de cuisson	Comporte -ment
84 202 8602	100 100 100 100	100 100 100 100	288,04 345,01 307,99 298,99	2,88 3,45 3,08 3,0			
(*) : (*) :		().			

Le « Soumbiam »

3

: 30% 20%

•

; - -

,

50%

84 202,

•

,

,

•

,

.

,

			(°,	⁄₀)	
84 202	30: 50:20		+	23	
	30: 50:20	-	+	27	
8602	30: 50:20	- +	+	25	
(*) -	30. 30.20	: 30%		44	
-	:	50%			
- :		20%			
Le "kissar"	,				3
		•			,

,

Tableau 5. Paramètres observés sur les kissars de CMS 8602, Kouri et IB 84 A202.

Variétés	P.T. des composants	Nb. Des PF (**)	P.T des PF	PU des PF	Couleur	Tenue	goût
IB 84 A202 Kouri CMS 8602	39 27 g 39 27 g 40 77 g	14 14 18	1.600 g 1.686 g 2.141 g	114 116 119	Blanche Brunâtre Jaune	Bonne+ Bonne+ Bonne+	Acceptable ++ Acceptable ++ Acceptable ++
(*) (**)							

, ,

202

,

•

•

0,53 8602 0,42 84 202 0,41.

,

.

84 202, 8602,

.

Les beignets.

• , •

, , , , ,

106,34%.

, () , , ,

> 3 ,

Le biscuit.

,

•

84

3

,

•

•

,

•

.

•

			86	02		84	202.		2	
						,				
									3	
								,		
				3	3					
								-		:
-				:		15%				
-	:		:			35% 25%				
-		:				25%				
-					:			,	,	

,

,

•

. Farine infantile.

				3	
	,			3	
			:		
-			:		60%
-		:			20%
-					8% 12%

, ,

Conclusion

, .

				2000
2001			,	8602
84	202	(80 %)	
		(47,66).	

8602 . 84 202 8602.

(101)

Bibliographie

(), . 1997. Nutrition des jeunes enfants et de leurs mères au Tchad.

,

,

.

, , , 2000. Mémoire de Maîtrise Université de Bangui: :

Effect of dehumidification and storage conditions on the longevity of maize seed

E.A. Asiedu¹, A.G.J. van Gastel¹, P.Y.K. Sallah², and P. Adusei-Akowuah¹

¹West African Seed Development Unit (WASDU) Crops Research Institute. PO Box 3785, Kumasi, Ghana. ²Crops Research Institute, PO Box 3785, Kumasi, Ghana.

?

?

Abstract

Résumé

Introduction

,

(. 1999).

,

30? 1998),

75% (

,

		-		:				
??			,					(
??).					
??				•		"	"	
				•			,	
??			•					
		•						
??		(:)			,	
??	()			•			
??						,		
??		·					,	
??			,					
??							,	

Description of the dehumidified dryer

Seed storage experiment

.

, 200 (0.2 726 10) , 100 200 11.0% 72 (0.2). 144 , (10? /80% . .) (21 31? /68 86% . .) 18 • :

1. 8.0%

. .).

(21 31? /68-86%

,

2. 8.0% 3. 11.0%	(10? /80%). (21 31? /68	86%
4. 11.0%	(10? /80%).	
2 2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5, 6, 6 70), 3-	70),
().	11.0% 8.0%	
	3	6
	•	

Germination test

, 100 , , , , , (105? 24) , , (30). 27 32? . 4 5 . (1981).

> (\$38),

Results and Discussion

. -

•

,

18			,	
	8.0%			96.7%
		4.1%		(

Table	1. Effects	of percent	seed moisture	conten	it (% I	MC) and
	storage	conditions	on germination	of the	maize	variety,
	Obatan	pa over a per	iod of 18 month	s.		

.

%			3.	6.	9.	12	15	18
8	(21-31°/68-	96.7	94.4	 95.4	94.7	, % 94.6	95.4	93.6
8	86%) (10º /80%	96.7	96.3	95.4	94.0	96.2	96.1	96.5
11) (21-31º /68-	96.7	95.1	93.4	91.4	75.8	61.7	40.3
11	86%) $(10^{0}$ /80%	96.7	96.4	95.1	95.5	96.3	96.6	95.8
	•••)	96.7 0.00	95.6 0.48	94.8 0.48	93.9 0.89	90.7 4.99	87.5 8.59	81.6 13.76
1	1.0%		96.7%	, 4	0.3%, 11	.0%		56.4
	95%		18-					1
2).				1	3		2	(

1).

	8.0%	
95.0%,		11.0%

Table 3. Effects of variety, percent seed moisture content (% MC) and storage period on the seed germination of eleven maize varieties.

•

	8.	0%		1	1.0%	
		3	6		3	6
				,%		
Inbred lines						
3	97.5	99.5	95.0	96.5	95.5	87.0
1368	95.5	99.0	99.5	99.5	96.0	66.0
9071	99.0	98.0	100	98.0	98.0	92.0
6	96.5	97.5	95.0	96.5	97.5	80.5
7	93.0	96.5	97.5	96.5	92.5	73.0
70	98.0	96.5	95.5	98.0	97.0	83.5
Single-crosses						
3 1368	95.0	100	98.0	98.5	97.5	80.0
6 70	95.5	99.0	97.0	98.5	98.0	84.0
Three-way crosses						
(3 1368) 9071	95.5	99.0	99.0	98.5	98.5	95.0
(6 70) 5	100.0	98.5	97.5	99.5	100	88.0
OPV						
	98.0	98.0	98.0	99.5	97.5	92.5
	96.7	98.3	97.5	98.1	97.4	80.5
	0.61	0.35	0.52	0.36	0.84	4.12

	1	1	.0%
85%			

.

(9071

,

,

,

11.0%

		,
11.0	12.5%	

,

•

18 , \$114 .

•

Summary and Conclusions

References

development in West and Central Africa.

, 1999. / . (). 1981.

. Journal of Seed Technology 62 (2):1 26.

, . . 2000. Financial and economic analysis of the West Africa Seed Development Unit's (WASDU's) seedsaver.

 (
).
 , 2000. 8 .

 , . ., 1972.
 .
 145

 240
 .
 (
 .) Seed Biology.
 .,

. (), .60.

, . . 1972.

. 253 306 . . (.) *Viability of seeds.* , .

WASDU Workable Approach No. 4

(). , .

An approach to rapid deployment of agricultural technologies—Transfer of downy mildew resistant maize to farmers in Ogbomoso, southwest Nigeria

S.O. Ajala, V.M. Manyong, V. Adenle, K.O. Makinde, A. Akintunde, J. Olufowote¹, M. Bolaji², and B. Bolaji²

International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria ¹World Vision International, PO Box 1490, Kaneshie, Accra, Ghana ²Oyo State Agricultural Development Project, Zonal Office, Ogbomoso, Oyo State, Nigeria.

Abstract

Résumé

_ • , 1988). , •

• 1983). (

, , (. 2001).

> (&) & • 37 , .

> > _ ,

(

,

,

1960 .

Introduction

•

•

,

,

,

Elements of the new strategy

_

(

•

:

??	-			
		,		
??				
??				
??				
??				

Multi-institutional collaboration to put complementary efforts in place

,

,

,

,

•

Identification of a niche for the technology

Active farmer participation

-(1992). ,

_

, , , , ,

, , _ _

Farmer empowerment

(_____) . .

•

20 . 50

1000 ².

Interaction among farmers

. . ,

,

(

1993, .67).

Case Study

.

sorghi

- , .
- ,
- ,
- .

1997.

•

Perenosclerospora

•

.

,

- ; , , ,
 - , ,

Choice of area and deployment strategy

Figure 1. Map of Oyo State of Niger ia showing the study area.

.

.

.

60

Results and Discussion

,

,

Trends in technology dissemination

1997.	(. 2).	9	
1998	296%	1999.		178%
(1993)	-	,		-

.

.

,

,

20 20

, .

()

,

.

1999,

•

507

	1999	31%	1997
56%		1998	8.

Table 1. Grain yield and economic profitability of DMR maize varieties in Ogbomoso, Nigeria, 1997-99. (*All fields at full costs).

	1997 n=25	1998 n=109	1999 n=487
()	0.71	0.66	0.57
(/)	2207	1847	2887
(—/)	18996	33647	19858
(—/)	40458	23258	32929
(—/)	21462	-10389	13071
	2.13	0.69	1.65
BC ratio (% farmers)			
< 1.00	8.0	80.7	20.3
1.00 < < 2.00	40.0	19.3	46.8
> 2.00	52.0	0.0	32.9

*Cost of family laboiur included.

Table 2. Grain yield and economic profitability of DMR maize varieties in Ogbomoso, Nigeria, 1997–99 (All fields at cash costs).

	1997 N = 25	1998 <i>N</i> = 109	1999 <i>N</i> = 487
	0.71	0.66	0.57
()	0.71	0.00	0.57
(/)	2207	1847	2887
(─/)	13555	21447	15040
(/)	40458	23258	32929
(—/)	26903	1811	17889
	2.98	1.08	2.19
BC Ratio (% Farmers)			
< 1.00	10.5	45.9	11.5
1.00 < < 2.00	50.8	40.4	35.0
> 2.00	38.9	13.8	53.5

.

Economic benefits

•

_

()

.

Economic benefits over all maize fields

) (1. () 2. 1, (**—**18 996) 1997 1999 (=19 589). 77%1998, 170%**-**400 1997 **=**1080 1998. 1997 (-21 462), 1998 (-10 389). 1998 (0.69), - () 2.13 1.65 1997 1999, . , . 1. 90% 1997 , 80% 80% 1999 -1998. , . (< 1) > 2). ((),

Economic benefits due to intervention

_

.

,

1999 33% 3.

,

.

•

140%

-	n=393	intervention n=94
()	0.54	0.71
(/)	2929	2713
(—/)	19649	20736
(—/)	34590	25982
(—/)	14941	5246
	1.76	1.25
< 1.00	17.0	34.0
1.00 < < 2.00	47.8	42.6
> 2.00	35.1	23.4

Table 3. Economic profitability of DMR maize varieties in fields withor without intervention at Ogbomoso, Nigeria, 1999.

Effect of project experience on economic benefit	S
--	---

•

,

. ,

.

• • •

•

Table 4. Effects of farmers' experience on the profitability of growing DMR maize varieties in Ogbomoso, Nigeria, 1998-99.

	1998					
			1	999		
		1			1	2
	n=87	N=22	n	=420	n=47	n=20
()	0.61	0.86		0.57	0.56	0.65
(/)	1707	2398		2932	2466	2936
(—/)	32748	37199	2	20117	17656	19615
(—/)	21321	30917	3	32850	32470	35670
(—/)	-11427	-6282	1	12733	14814	16055
	0.65	0.83		1.63	1.84	1.82
BC ratio (% farmers)						
< 1.00	48.3	36.4		21.7	10.6	15.0
1.00 < < 2.00	40.2	40.9		46.0	55.3	45.0
> 2.00	11.5	22.7		32.4	34.1	40.0

^{4.}

(**=**12 733).

Spill-over effects of intervention

_

4. , (

,

Table 5. Spillover effects of growing DMR maize on fields with and
without intervention in Ogbomoso, Nigeria, 1997-99.

•

	With	interven	tion	Witho	out interv	vention	
	New	1 Year	2 Years	New	1 Year	2 Years	
	n=338	n=40	n=15	n=82	n=7	n= 5	
()	0.53	0.53	0.72	0.73	0.74	0.44	
(/)	2988	2381	3046	2699	2955	2607	
(—/)	19948	17828	17756	20811	16674	25191	
(—/)	34617	33386	37205	25566	27229	31065	
(/)	14669	15558	19449	4755	10555	5874	
	1.74	1.87	2.10	1.23	1.63	1.23	
BC ratio (% farme	ers)						
< 1.00	18.6	7.5	6.8	34.1	28.6	40.0	
1.00 < < 2.00	46.4	60.0	46.6	43.9	28.6	40.0	
> 2.00	34.9	32.5	46.6	22.0	42.8	20.0	

Farmers perception of benefits

,

,

,

.

)

Figure 3. Perception of the current level of downy mildew incidence by participating and non-participating farmers in a DMR maize variety intervention in Ogbomoso, Nigeria, 2000.

Figure 4. Effect of DMR varieties on maize grain yield as perceived by participating and non-participating farmers in a DMR maize variety intervention in Ogbomoso, Nigeria, 2000.

Farmer types

Figure 5. Effect of DMR varieties on income from maize production as perceived by participating and non-participating farmers in a DMR maize variety intervention in Ogbomoso, Nigeria, 2000.

Figure 6. Uses made of additional income by participating and nonpaticipating farmers in a DMR maize variety intervention in Ogbomoso, Nigeria, 2000.

Credit Extension

, ,

1999.

Participation in field days

--,

Indirect benefits

515

1998

Lessons learnt

,

.

,

•

,

,

,

,

.

.

,

,

,

() (). .

, . (1993 .69) . 2000

		17 000			1988
80 000	1989.				
				,	
			(

)

· ·

Conclusion

.

,

,

References

,

. 2001. , . ., . . , . .

> . 345 357 . . .

> > . .

, . . . (.) Impact, challenges and prospect of maize research and development in West and Central Africa.

, 4 - , , / . 7 1999, , ., . _ . 1993.

, (.) Policy options for agricultural development in sub-Saharan Africa. , . .: / / 2000.

, . 1993. , . . (.) Policy options for agricultural development in sub-Saharan África. . .: / / 2000.

, . . 1993.

. .. (.) Policy options for agricultural development in sub-Saharan Africa. , . .: / / 2000.

. 1983. , . ., . Innovative &

518

,

,

Enhancing the capacity of National Agricultural Systems for maize research and development in West and Central Africa: Accomplishments of WECAMAN and planned activities for the immediate future

B. Badu-Apraku¹, M.A.B. Fakorede², S.O. Ajala³, R. Obubo³ and C. Okafor³

¹IITA, Bouaké, Côte d'Ivoire ²Obafemi Awolowo University, Ile-Ife, Nigeria ³IITA, Ibadan, Nigeria

Abstract

Résumé

21

Methodology

Identification of training needs

: () / ; () () , () .

1995

,

•

. 1995 ; 1997,

•

,

1999, 2001 (

	1991	2	11
	1995	2	27
Striga	1995	2	8
	1996	1	15
	1996	2	17
_	1998	2	11

,

Table 2. Title, year, duration and number of participants in
WECAMAN training courses for scientists, 1991-2000

, , , , , , , , , , , ,

.

1995

,

.

Advanced statistical computing courses for breeders and agronomists.

•

.

1995.

,

:

,

,

,

().

,

,

,

,

,

•

526

Workshop on maize quality, processing and utilization.

- - , / . , . ,

, , . _____.

-- , , - , , , , ,

2000

,

,

· , , · , , ·

, . . , , ,

.)

· · ·

, .

,

,

Workshop on impact assessment of maize stress management technologies.

Participants' evaluation of training courses and Workshops

: ?? - - ;

,

Daily and overall course evaluation by the participants.

.

Knowledge acquired,,?Usefulness/relevance,,?Depth of coverage,,,Presentation,,?Training material,,?Time allotment,,?

,

; /

;

;

;

;

.

;

, 1995

:

Data summarization.

,

, 1995

1994 1996

?

:

530

??

Results

2	
0	

Table	3.	Attitudinal	changes	of	NARS	resulting	from	WECAMAN
		training cou	rses and v	wor	kshops	in WCA.		

.

	??					
	??		,			
	99		,			
	<i>! !</i>					
			,			
				1,000		•
						,
					(-
		et al., 2002)	1999 ;	-		
		, 2002)				
		,	,			,
				•		
	??					
					,	
	??					
	??	,		,		
				,		
		,				
-				-		

Course evaluation by participants.

,

 Table 4 Overall course assessment by participants in WECAMAN courses.

			/	/
	(-61)	0	% 23.0	77.0
(- 64)	(- 01)	3.1	28.1	68.8
(- 04)		6.4	35.5	58.1
(= 62)				

Table 5. Extent to which WECAMAN course objectives were met and
the benefits of the courses as rated by participants.

			%	
	? (=246)	3.7	41.1	55.3
(=62)		1.6	17.7	80.6

 Table 6. WECAMAN Course design and delivery as rated by course participants.

				/
1.	(=63)	0	12.7	87.3
2.	(=62)	1.6	19.4	79.0
3.				
	(=65)	3.1	24.6	72.3
4.				
	(=61)	23.0	50.8	26.2
5.	(=37)	21.6	75.7	2.7
6.	(=62)	5.4	27.0	67.6
7.	(=45)	6.7	35.6	57.7
8.	(=23)	4.3	91.4	4.3
9.				
	(=51)	23.5	39.2	56.9
10.	(=62)	51.6	38.7	9.7
		(two	(about	(too long)
		short)	right)	

,

•

Table	7.	Views	of	WECAMAN	course	participants	on	time	allotment
		for co	urs	e activities	•				

1.	(=38)		21.0	73.7	5.3
2.		(=35)	28.6	71.4	0
3.	/	(=36)	40.0	56.7	3.3
4.	Ì		22.2	77.8	0

Table 8. Support facilities and arrangements of WECAMAN coursesas rated by participants.

a	D	Satis -	Good/
Course execution item	Poor	factory	Excellent
1.	1.5	41.2	57.3
(=63)			
2. (=22	2) 18.2	40.9	40.9
3	.,		
(=19)	10.5	31.6	57 9
(19)	10.0	01.0	01.5
ч. (28)	10 5	01.0	
- (=38)	10.5	21.0	68.5
- (=33)	9.1	18.2	72.7
- (=8)	62.5	25.0	12.5
5. (=62)	8.1	25.8	66.1
6. (=59)	18.6	40.7	40.7
7. (=23)	4.3	60.9	34.8
8. (=61)	26.2	21.3	52.5
9. (=54)	24.1	42.6	33.3
10. (=14)	0	21.4	78.6
11. /	52.6	23.7	23.7
(=38)	0110	2011	
· /			

•

(7).

,

•

,

,

•

533

,

•

/

Discussion

/ , / , 148 , 20 . .

,

· · , , , , , , ,

. , 1995 . . , . ,

1994-97, 75 8[°] 105 1998-2000 (. 1).

Figure 1. Number of scientists involved in the collaborative research projects of WECAMAN and number with Ph.D. degrees in the 1987–1993, 1994–1997 and the 1998–2000 eras.

•

()

Planned training activities of WECAMAN for the immediate future.

.

•

194

, - , , , , ,

· - ,

1988,

. , ,

- · · -

Type of training activity	2003	2004	2005	Approximate number of participants
				22
				16
				22
				22
				13
				120
-				3
-				2

Table	9.	Number	of	workshops	and	training	courses	planned	for
		WECAMA	N , 1	2003-2005.		0		-	

References

- , ., 2003.

. (In this Volume).

,

1997. Contributing to food self sufficiency: maize
research and development in West and Central Africa.
, 2921995,,/-,,.2002.

•

:

•

Journal of Natural Resources and Life Sciences Education (, ,).

1999 . Strategy for sustainable maize production in West and Central Africa.

, - , , 21 25 , 1997. / .

138 149 . - , . . , , . , .

-

production in West and Central Africa.

, 21 25 , 1997. , , , , , ,

. . , , 2001. Impact, challenges and prospects of maize research and development in West and Central Africa. , 47 1999, - , . / .